Abstract No: 113

Physical Sciences

NUMERICAL STUDY OF THE EFFECT OF DELAFOSSITE CuAlO₂ AND PEDOT:PSS AS HOLE TRANSPORT MATERIALS IN THE 3D/2D PEROVSKITE SOLAR CELL

N.L. Adihetty¹, D.R. Ratnasinghe¹, M.L.C. Attygalle^{2*}, N.S. Narayan³ and P.K. Jha³

¹Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, Sri Lanka ²Department of Physics, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

³Department of Physics, The Maharaja Sayajirao University of Baroda, Gujarat, India ^{*}lattygalle@sci.sjp.ac.lk

Metal halide perovskite solar cells have shown good performance in photovoltaic. Methylammonium lead iodide (CH₃NH₃PbI₃ or 3D-MAPI) is one of the most popular 3D metal halide perovskite materials. In this study, we numerically modelled metal halide perovskite solar cells having a p-i-n structure with intrinsic layers of 3D-MAPI and 2D monolayers of CH₃NH₃PbI₃ (2D-MAPI). However, the hole transporting material of the p-i-n perovskite solar cell can control the performance of the solar cell due to the recombination in the hole transporting layer (HTL). We simulated and observed how the delafossite CuAlO₂ and PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) HTLs affect the solar cell model with the structure of Glass/p-PEDOT:PSS or p-CuAlO₂ (HTL)/i-3D-MAPI/i-2D-MAPI/n-PCBM (ETL)/Ag. The fullerene derivative (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) was used as an electron transporting material (ETM). Firstly, the optimised solar cell model was simulated with a p-type PEDOT:PSS layer. Secondly, PEDOT:PSS was replaced with CuAlO₂ to observe its performance. The one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) has been used to model these solar cells under the AM1.5G solar spectrum. We have first obtained the results, with the power conversion efficiency (PCE) of 20.17%, open-circuit voltage (V_{OC}) of 1.10 V, fill factor (FF) of 76.08%, and short-circuit current density (J_{SC}) of 24.17 mA cm⁻². After replacing CuAlO₂, the solar cell performance improved, with the PCE of 23.17%, V_{OC} of 1.14 V, FF of 84.07%, and J_{SC} of 24.17 mA cm⁻² since CuAlO₂ has shown high shunt-resistant value than PEDOT:PSS. Consequently, the 3D/2D metal halide perovskite solar cell model with CuAlO₂ has numerically shown better power conversion efficiency than the solar cell model with PEDOT:PSS since the low carrier recombination at the CuAlO₂ layer (HTL).

Financial assistance from the Ministry of Science, Technology and Research, Government of Sri Lanka (Grant No. MSTR/TRD/AGR/03/02/15) is acknowledged.

Keywords: Hole-transporting material, Perovskite-based solar cells, Power-conversion efficiency, Recombination, SCAPS-1D